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a b s t r a c t

Numerical investigation of the two-dimensional flow and heat transfer, in a horizontal channel differen-
tially heated and obstructed by an inclined square cylinder mounted to the approaching flow with an angle
of inclination equal to 45� is carried out. The strategy is based on the combination of the Multiple Relaxation
Time Lattice Boltzmann Equation (MRT-LBE) to obtain the velocities and on the Finite Differences Method
(FDM) to solve the equation of energy. This numerical scheme is assessed against previous publications.
Close attention is paid to Reynolds number ranging from 0 to 300 at Prandtl number, Pr¼ 0.71 with constant
physical properties of the fluid. Results are presented in terms of streamline contours, isotherms, drag
coefficient, Strouhal number, local and average Nusselt numbers for various Reynolds numbers. The
computed results show that the presence of such bluff body affects significantly the fluid flow and causes
enhancement in the heat transfer from the hot bottom wall to the flow.

� 2009 Published by Elsevier Masson SAS.
1. Introduction

For a long time, the study of flow past bluff bodies such as square
and circular cylinders has fascinated researchers because of the
intrinsic complexities and importance of these flows in many
industrially important applications, obvious examples are cooling
of electronic components, cooling towers, oil and gas pipelines,
heat exchanger systems, chimneys, and flow-meters. In spite of
appearances, the fluid flowing over blocks displays a complicated
unsteady motion and presents a good opportunity to understand
these fundamental mechanisms of unsteady flow interactions
occurring in various technologies. Among the many studies ach-
ieved on this topic and available in literature, we cite the work of
Davis et al. [1] who have performed experimental and numerical
investigations of flow around a rectangular cylinder placed in
a horizontal channel with the Reynolds number ranging from 100
to 2000 and two values of the blockage ratio, b¼ 1/6 and b¼ 1/4.
They have discussed the effects of the variations of Reynolds
number, rectangle aspect ratio, blockage ratio and upstream
velocity profile upon the forces acting on the rectangle and
the structure of the wake. Strouhal numbers obtained both
fax: þ212 536500603.
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computationally and experimentally are compared for two values
of the blockage ratio. Igarashi [2] conducted an experimental study
of the flow characteristics around a square prism at an angle of
attack (0� � a� 45�) in the range of sub-critical Reynolds numbers.
He concluded that for a< 15�, the perfect separated regime may be
subdivided into symmetric and asymmetric flows, particularly at
a¼ 5�. For 15� < a< 35�, the lower separated shear layer reattaches
and a separation bubble exists on the lower surface. For
35� < a< 45�, the flow field resembles one about a wedge. In
another work [3], he studied the local as well as the average heat
transfer from a square prism to an air stream in the range of
sub-critical Reynolds number. He has observed that the average
heat transfer has a minimum value at an angle of attack (a) equal to
12�–13� and a maximum value at a¼ 20�–25�.

Numerically, Li and Humphrey [4] have performed the modeling
of unsteady, two-dimensional flow and heat transfer due to a square
cylinder located asymmetrically between the parallel sliding walls
of a channel at various orientations. Their numerous investigations
showed that the presence of the bounding walls in the flow, affected
significantly the behavior of vortex shedding behind the body.
Sohankar et al. [5] studied confined flow over a square cylinder at
incidence (a¼ 0�–45�) to investigate the influence of the Reynolds
number and the angle of incidence on the Strouhal number, the lift,
the drag and base suction coefficients. Turki et al. [6] have numeri-
cally investigated the mixed convection from a horizontal square
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Nomenclature

Cf dimensionless skin friction coefficient, Eq. (3)
C local skin friction coefficient, ReCf

Cd drag coefficient, Eq. (1)
Cl lift coefficient, Eq. (2)
d square cylinder diagonal height, m
f dominant frequency, s�1

FD total force per unit length on the cylinder in the
streamwise direction, N m�1

FL total force per unit length on the cylinder in the cross-
stream direction, N m�1

g acceleration of gravity, m s�2

H channel height, m
L length of the channel, m
Nu local Nusselt number, (dq/dy)y¼0

Nu space-averaged Nusselt number
CNuD space- and time-averaged Nusselt number
Pr Prandtl number, n/a
Re channel Reynolds number, umaxd/n
Rec Critical Reynolds number
St Strouhal number, fd/umax

T temperature, K
u flow velocity, u(u,v)
u x-velocity component, m s�1

umax maximum velocity at the inlet, m s�1

U dimensionless x-velocity component
v y-velocity component, m s�1

x, y Cartesian coordinates, m
X, Y dimensionless Cartesian coordinates, X¼ x/L, Y¼ y/L
Xin distance of the blocks from the inlet, m

Greek symbols
a thermal diffusivity, m2 s�1

b blockage ratio, d/H
DT maximal temperature difference, Th�Tc, K
m dynamic viscosity of fluid, kg m�1 s�1

n kinematic viscosity of the fluid, m2 s�1

r density of fluid, kg m�3

q dimensionless temperature, (T�Tc)/DT

Acronyms
BGK Bhatnagar-Gross-Krook
CFD Computational Fluid Dynamics
D2Q9 2-D 9-velocity
FDM Finite Difference Method
LBE Lattice Boltzmann Equation
LGM Lattice Gas Model
MRT Multiple Relaxation Time
SRT Single-Relaxation Time

Subscripts
c cold
f fluid
h hot
w wall
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cylinder to air for 62� Re� 200 and Richardson number (Ri) up to
0.1 for a blockage ratio of 1/4 and 1/8. The value of the critical Rey-
nolds number (onset of periodic flow) decreases while the Strouhal
number increases with increasing the Richardson number. They also
proposed correlations for the Nusselt number at different values of
the Richardson number (Ri¼ 0, 0.05 and 0.1). Abbassi et al. [7]
carried out a numerical investigation using control volume method
with the Simpler algorithm for pressure–velocity coupling to study
the forced convection in a horizontal channel with a built-in trian-
gular prism. They found that for symmetric flow corresponding to
a lower Reynolds numbers (Re< 45), the presence of the triangular
prism has only a local weak effects on the heat transfer from the
channel and on the flow pattern, while in periodic flow (Re� 45),
heat transfer from the channel is seen to increase strongly in
presence of the triangular prism. De and Dalal [8] developed
a second-order accurate finite volume code with a non-staggered
arrangement of variables employing momentum interpolation for
the pressure–velocity coupling for two-dimensional laminar flow
and heat transfer past a triangular cylinder placed in a horizontal
channel. Their results, presented for the range of 80� Re� 200 and
blockage ratio 1/12� b� 1/3, showed that the Strouhal number and
rms of lift coefficient increase significantly with blockage ratio and
Reynolds number while the overall Nusselt number remains almost
constant for different blockage ratios. At lower blockage ratios, the
flow is found to be similar to the unconfined flow and is more prone
to wake instability.

It is worth noting that most of the numerical studies available in
the literature employed techniques based on solving the Navier–
Stokes equation. However, it is not easy to deal with problems of
complex geometries or when there are several fluid phases or
several fluids. In this context a different approach, namely Lattice
Boltzmann Equation (LBE) has found extensive applications in
simulating physical phenomena of various complexities. The LBE
emerges as a simple, innovative, viable and efficient alternative to
the traditional CFD methods. Significant advances of theoretical
algorithms and practical industrial applications of the LBE approach
have been made (see for example, Ginzburg et al. [9,10]) where
a Lattice Boltzmann method, with just two relaxation times, is used
to improve the algorithm with respect to BGK operator. By now,
some of the advantages in this fundamentally new alternative
method have been considerably more understood and appreciated
in the mainstream scientific and engineering communities. These
advantages include: Less numerical dissipations due to the linear
and Lagrange type advection operator in the Boltzmann equation,
local dynamic interactions allowing highly parallel computations,
physical control of boundary conditions for complex hydrodynamic
fluxes on arbitrary geometries, microscopically consistent realiza-
tion of thermodynamics and intrinsic handling of interface prop-
erties in multiphase flows, and simpler yet more faithful
formulation of complex macroscopic physical properties in a wider
range of scales. The embedded advantages of LBE have created
a great opportunity to apply this innovative approach to real
engineering problems encountered in a variety of industries. The
LBE has been widely used in many kinds of complex flows such as
single component hydrodynamics, multiphase and multi-compo-
nent fluids, magneto-hydrodynamics, reaction-diffusion systems,
flows through porous media and turbulent flows (see Chen and
Doolen [11], Mezrhab et al. [12], Semma et al. [13]).

Cheng et al. [14] have used a lattice Boltzmann method to
investigate a linear shear flow past a square cylinder at low Rey-
nolds number. Their results show that the vortex structure behind
the cylinder is strongly shear-rate dependent. However, the study
was limited to a single Reynolds number. Zhou et al. [15] carried out
a numerical study on reduction of fluid forces acting on a square
cylinder in two-dimensional channel using a control plate; they
used the Lattice Boltzmann technique and their results showed that



Fig. 1. Schematic configuration with built-in inclined square cylinder.

M.A. Moussaoui et al. / International Journal of Thermal Sciences 49 (2010) 131–142 133
the drag and the fluctuating lift are significantly reduced by the
presence of the control plate.

It is well known that the vortex shedding phenomenon can be
dramatically altered for uniform flows past a bluff body at different
Reynolds numbers. Of course, the vortex structure behind an
obstacle in shear flow may also be Reynolds-number dependent.
Breuer et al. [16] investigated in detail the confined flow around
a square bar mounted inside a plane channel with a blockage ratio
of 1/8 by two entirely different numerical techniques, namely
a Lattice Boltzmann Equation (LBE) and a finite volume method
(FVM). They found an excellent agreement between LBE and FVM.
Guo et al. [17] conducted a comparative study of the Lattice
Boltzmann equation (LBE) and the Gas-Kinetic Scheme (GKS)
methods for 2D incompressible laminar flows past a square block
symmetrically placed in a channel with the Reynolds number
between 10 and 300. Their results show that both LBE and GKS
methods yield to quantitatively similar results for laminar flow
simulations, and agree well with existing ones, provided that
a sufficient grid resolution is given. For 2D problems, the LBE is
about 10 and 3 times faster than the GKS for steady and unsteady
flow calculations, respectively, while the GKS uses less memory.
Guo et al. [18] studied the confined flow around a square cylinder
mounted inside a two-dimensional channel (blockage ratio b¼ 1/8)
by using a non-uniform Lattice BGK model. They presented
a detailed analysis for a range of Reynolds numbers between 1 and
500 and showed that the model gives accurate results for complex
flows. The mechanism of heat transfer under such an unsteady flow
in a channel flow with the insertion of a cylinder has not been
investigated to the same extent.

The main purpose of the present work is to study the effect of
the presence of an inclined square cylinder on the fluid flow and
heat transfer into two-dimensional channel differentially heated,
for which the Reynolds number ranges from 20 to 300. The
investigation is carried out using a hybrid scheme with Thermal
Lattice Boltzmann and Finite Difference method. This scheme was
proposed by Lallemand and Luo [19,20] and by Mezrhab et al. [21],
and was used by many authors, as an example, we can quote
Leemput et al. [22] and Van Treeck et al. [23].

The remainder of this paper is organized as follows. Section 2
presents the problem under investigation and gives a concise
introduction of the numerical scheme (MRT-LBE). In Section 3,
results from MRT-LBE simulation are presented and discussed. Also,
in this section, onset of vortex shedding, steady and periodic flow
description and wake visualization are dealt with separately in
order to make the current investigation clear. Finally, we conclude
the paper with a summary of our results in Section 4.
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Fig. 2. A 2-D 9-velocity lattice (D2Q9) model.
2. Formulation of flow problem

2.1. Statement of the problem

The test case chosen for the present study is the two-dimen-
sional laminar flow past an a square cylinder inclined of 45 degrees
with respect to the channel centerline and symmetrically placed
inside a channel, as depicted in Fig. 1. The fluid circulating in the
channel is the air (Pr¼ 0.71) and its physical properties, except its
density, are supposed to be constant. The ratio L/d is set equal to
30.75 and the blockage ratio is b ¼ d/H¼1/4. The cylinder is placed
at a distance Xin/d¼ 8 downstream from the inlet section of the
channel. Values of L/d and Xin/d are those reported by Davis et al.
[1]. The inclined square cylinder, the top wall and the incoming
stream are assumed to be in a constant cold dimensionless
temperature qc¼�0.5, while the bottom wall is at a hot dimen-
sionless temperature qh¼ 0.5.
At the inlet, a fully developed parabolic profile for the stream-
wise is enforced; at the outlet, an artificial open boundary condition
(OBC) is imposed, so, the Neumann boundary condition (NBC) is
used, i.e., the streamwise gradients of the velocity and temperature
are set to zero. Note that with this condition, we avoid having to use
a large computational domain.

The viscous and pressure forces acting on the cylinder were
used to calculate the drag and lift coefficients (Cd, Cl). These coef-
ficients are defined as:

Cd ¼
FD

0:5ru2
maxd

(1)

Cl ¼
FL

0:5ru2
maxd

(2)

where FD and FL are the drag and lift forces exerted by the fluid on
the cylinder, respectively. As the force on the cylinder caused by the
viscous is too small, all forces mentioned herein refer to the force
induced by the pressure distribution, which were obtained by
integration.

The dimensionless skin friction coefficient is given by:

Cf ¼ 2ðvU=vYÞw=Re (3)

2.2. Multiple relaxation time Lattice Boltzmann
equation (MRT-LBE)

The Lattice Boltzmann Equation (LBE) is a numerical scheme
evolved from the Lattice Gas Model (LGM) in order to overcome the
difficulties encountered with the LGM [24]. In LBE, the fluid field is
discretized by a group of microscopic particles. The density distri-
butions of these particles perform two types of motions: collision
and streaming. In what follows, we use the D2Q9 model (see Fig. 2)
on a square lattice with lattice spacing dx¼ dy (where D refers to
space dimensions and Q to the number of particles at a computa-
tional node). Each node comprises three kinds of particles, rest



A

Physical wall 

B

Last fluid node 

First solid node 

Fig. 3. Bounce-back boundary condition on each direction.
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particles that reside in the nodes of the lattice, particles that move
along the coordinate directions and particles that move along
diagonal directions.

The simplest Lattice Boltzmann equation (LBE) is the lattice
Bhatnagar-Gross-Krook (BGK) equation based on a single-relaxa-
tion time (SRT) approximation [25]. Due to its extreme simplicity,
the lattice BGK equation has become the most popular lattice
Boltzmann model. However, this simplicity comes at the expense of
numerical instability [26] and inaccuracy in implementing
boundary conditions [27]. These deficiencies in the BGK models can
be overcome with the use of multiple relaxation-time (MRT) model
introduced by d’Humières [28]. It has been clearly demonstrated
that the LBE models with MRT collision operators have inherent
advantages over their BGK counterparts [25,26]. The MRT-lattice
Boltzmann equation (also referred to as the generalized lattice
Boltzmann equation (GLBE) or the moment method) overcomes
some obvious defects of the BGK model, such as fixed Prandtl
number (Pr¼ 1 for the BGK model) and fixed ratio between the
kinematic and bulk viscosities. The MRT-LBE models are much
more stable than the BGK, since the different relaxation times can
be individually tuned to achieve ‘‘optimal’’ stability [26].

For a MRT-LBE model with 9 velocities, a set of velocity distri-
bution functions fi (rj, tn), i ˛ {0, ., 8} is defined on each node rj of
the lattice and for time tn. The evolution equation for the MRT-LBE
of 9 velocities on a 2-dimensional lattice rj˛ðdxZÞ2 with discrete
time tn˛dtN¼ dtf0;1;2;.g is:

f
�
rj þ eidt ; tn þ dt

�
� f
�
rj; tn

�
¼ �M�1S

�
m
�
rj; tn

�
�meq�rj; tn

��
(4)

where f (r,t), m (r,t) and meq (r,t) are 9-dimensional vectors for the
distribution functions, the moments, and the equilibria of
moments, respectively, e.g., f ¼ ðf0; f1;.; f8ÞT ˛Vð¼ R9Þ, and
m ¼ ðm0;m1;.;m8ÞT ˛Mð¼ R9Þ, T being the transport operator.
M is the 9� 9 transformation matrix such that m¼Mf and
f¼M�1m and S is the collision matrix in the moment space M.
Explicitly, matrices M and S of the incompressible lattice Boltzmann
model can be written as, respectively:

M ¼

0
BBBBBBBBBBBB@

1
�4
4
0
0
0
0
0
0

1
�1
�2
1
�2
0
0
1
0

1
�1
�2
0
0
1
�2
�1
0

1
�1
�2
�1
2
0
0
1
0

1
�1
�2
0
0
�1
2
�1
0

1
2
1
1
1
1
1
0
1

1
2
1
�1
�1
1
1
0
�1

1
2
1
�1
�1
�1
�1
0
1

1
2
1
1
1
�1
�1
0
�1

1
CCCCCCCCCCCCA

(5)

and

S ¼ diagð0; s1; s2;0; s4;0; s6; s7; s8Þ (6)

where si are relaxation rates.
The nine-velocity square lattice model, which is often referred to

as the 2-D 9-velocity (D2Q9) model (Fig. 1), has been widely and
successfully used for simulating two-dimensional (2-D) flows. In the
D2Q9 model, ei denotes the discrete velocity set, namely,

ei ¼

8<
:
ð0;0Þ; i¼ 0
ðcos½ði�1Þp=2�; sinð½ði�1Þp=2�ÞÞc; 1� i�4ffiffiffi

2
p

cðcos½ð2i�9Þp=4=�; sinð½ð2i�9Þp=4=�ÞÞ; 5� i�8
(7)

where c¼ dx/dt is the particle velocity and dx and dt are the lattice
grid spacing and the time step, respectively. From here on, we shall
use the units of dx¼ dt¼ 1 such that all the relevant quantities
correspond are dimensionless.
The nine components of the moment vector m are arranged in
the following order: m0¼ r is the fluid density, m1¼ e is related to
energy, m2¼ 3 is related to the energy square, m3,5¼ jx,y are
components of the momentum J¼ (jx, jy), m4,6¼ qx,y are related to
components of the energy flux and m7,8¼ pxx,xy are related to the
components of the symmetric and traceless strain rate tensor.
These nine moments are separated into two groups: (r, m3, m5) are
the conserved moments which are locally conserved in the collision
process; (m1, m2, m4, m6, m7, m8) are the non-conserved moments.
In the MRT-LBE framework, all modes (i.e., moments) are orthog-
onal and their relaxation rates can be controlled individually. This
allows the MRT model to include the maximum number of
adjustable parameters. Following, the non-conserved quantities are
calculated from the relaxation equations:

mac
j ¼

�
1� sj

�
mbc

j þ sjm
eq
j (8)

where mac
j denote the moments after collision, mbc

j are the post-
collision moments, sj are the inverse relaxation times which are the
diagonal elements of the matrix S and meq

j are the corresponding
equilibrium moments. Note that the collision rates s0, s3 and s5 are
not relevant, since they are related to the conserved moments. In
order to obtain a consistent dynamics viscosity, relaxation rates s7

and s8 have to be equal s7¼ s8. The other relaxation rates have no
physical meaning for incompressible flows and stability reasons,
they can be freely chosen in the range 0< si< 2.

In the lattice units of dx¼ dt¼ 1, the speed of sound in this model
is cs¼ c/O3 and the kinematic viscosity n is given by:

n ¼ c2
s dt

�
1
s7
� 1

2

�
¼ c2

s dt

�
1
s8
� 1

2

�
(9)

The equilibrium values of the non-conserved moment meq are
chosen to be [21]:

eeq ¼ �2rþ 3
�

j2x þ j2y
�
; 3eq ¼ r� 3

�
j2x þ j2y

�.
rm

qeq
x ¼ �jx; qeq

y ¼ �jy

peq
xx ¼

�
j2x � j2y

�.
rm; peq

xy ¼ jxjy=rm

(10)

The constant rm is the mean density in the system and is usually set
to be unity in simulations.

The Boltzmann equation is linked to the equations of macroscopic
hydrodynamics by averaging properties over velocity space such that
the macroscopic density, r, and momentum, ru, are given by

r ¼
X8

i¼0

fi (11)

ru ¼ J
�

jx; jy
�
¼
X8

i¼0

fiei (12)

The bounce-back condition is applied at all walls [29]. This type of
boundary condition locates the physical wall at the half grid
spacing beyond the last fluid node (see Fig. 3). On the interface
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between the fluid and the sides of the inclined square prism, we
have used a combination of the bounce-back scheme and spatial
interpolations of second order because there are some particles
that are going to be in interstitial positions after being rebounded.

2.2.1. Boundary conditions
In this subsection, we describe the interpolation procedure which

is depicted in Fig. 4. The usual bounce-back condition [30] is applied at
all solid walls which are located at the half grid spacing beyond the
last fluid node xf. In cases where walls are arbitrary located, a simple
boundary condition based on the bounce-back scheme and a spatial
quadratic interpolation [29,31] is used. In Fig. 4, the parameter D
represents the fraction in the fluid region of a grid spacing intersected
by the boundary, i.e., D ¼ jxf � xwj=dx. Fig. 4(a) shows that the
particle moves from xf toward xw, then it comes back to its place after
being reflected by the wall. This case is subjected to the usual bounce-
back boundary conditions. Whereas in the two others cases (Fig. 4(b)
and (c)), the particle stands in interstitial positions xi. To keep the
structure of the grid, the distribution had to be reconstructed. For
example: in case of D< 1/2, at time t, the distribution function of the
particle with velocity pointing to the wall (Fig. 4(b)) at the grid point xf

(a fluid node) would end up at the point xi located at a distance
(1�2D)dx away from the grid point xf, after the bounce-back collision.
Because xi is not a grid point, the value of f3 at the grid point xf needs to
be reconstructed. Noticing that f1 starting from point xi would become
f3 at the grid point xf after the bounce-back collision with the wall, the
values of f1 at the point xi are built using a quadratic interpolation
Re

C
d

0 50 100 150 200 250 300
1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

Our results
Breuer et al. FVM
Breuer et al. LBA

a b

Fig. 5. Comparison with previous work for: (a)
which requires values of f1 at three points that are f1(xf),
f1ðx0f Þ ¼ f1ðxf � e1Þ and f1ðx00f Þ ¼ f1ðxf � 2e1Þ. For the case where
D� 1/2, f3(xf) is constructed by a quadratic interpolation involving
f3(xf) that is equal to f1(xf) before the bounce-back collision, and the
values of f3 at the nodes after collision and advection, i.e., f3ðx0f Þ, and
f3ðx00f Þ. It is emphasized that this method needs to treat the boundary
conditions separately for D< 1/2 and D� 1/2. In other words, inter-
polations are performed as follows:

1. For D< 1/2, interpolate before propagation and bounce-back
collision.

2. For D� 1/2, interpolate after propagation and bounce-back
collision.

This is done in order to avoid the use of extrapolations in the
boundary conditions for the sake of numerical stability. This leads
to the following interpolation formulas (where the notations bf i and
fi denote the post-collision distribution functions before and after
advection):

fi

�
xf ; t

�
¼ Dð1þ 2DÞbf i

�
xf ; t

�
þ
�

1� 4D2
�bf i

�
x0f ; t

�
�Dð1� 2DÞbf i

�
x00f ; t

�
for D < 1=2 (13)

fi

�
xf ; t

�
¼ 1

Dð1þ 2DÞ
bf i

�
xf ; t

�
þ ð2D� 1Þ

D
fi

�
xf 0 ; t

�

�ð2D� 1Þ
ð2Dþ 1Þfi

�
x00f ; t

�
for D � 1=2 (14)

where fi is the distribution function of the velocity eih� ei. Note
that, if one uses an efficient LBE code in which collisions and
motions are performed together, then the information needed in
the previous equations are moved one step along ei and so the effect
of boundaries is taken care of by:

fi

�
xf ; t

�
¼ Dð1þ 2DÞfi

�
xf þ ei; t

�
þ
�

1� 4D2
�

fi
�

xf ; t
�

� Dð1� 2DÞfi
�

xf � ei; t
�

(15)

fi

�
xf ; t

�
¼ 1

Dð1þ 2DÞfi
�

xf þ ei; t
�
þ ð2D� 1Þ

D
fi

�
xf � ei; t

�

�ð2D� 1Þ
ð2Dþ 1Þfi

�
xf � 2ei; t

�
(16)
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Fig. 6. Variation of space- and time-averaged Nusselt number versus Re on each face of the cylinder. x: our results, ,: Turki et al. [6].
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2.3. Equations of temperature

As we use the LBE approach for the fluid flow, we could have
used a second LBE model (with just one conserved quantity of
scalar character) to compute the temperature. However, the cor-
responding computational cost is the almost the same as the fluid
LBE. For this reason, we have chosen to use here the simple finite
difference approach since it reduces the computational cost of the
temperature by a factor of the order of 5. The energy equation is
given by the following:

Dq

Dt
¼ af V2q (17)

where D/Dt¼ v/vtþ ujv/vxj denotes the convective derivative.
Table 1
Results for grid test for Re¼ 200.

Mesh d (pts) Cd St CNuD

953� 123 31 21,368 02,100 1.859
1261� 163 41 20,944 02,097 1.840
1567� 203 51 20,611 02,101 1.830
1875� 243 61 20,373 02,104 1.828
To solve the energy equation, we use the finite difference
scheme and we take the same grid points as for the LBE scheme,
Mezrhab et al. [21].

Let us consider the space and temporal step equal to 1, the
equation (17) is solved explicitly using a first-order forward
difference scheme in time (Equation (18)) and a second-order
central difference scheme (Equations (19) and (20)) for space
discretization as follows:

vq

vt
zqnþ1ði; jÞ � qnði; jÞ (18)

vq

vx
z

qðiþ 1; jÞ � qði� 1; jÞ
2

;
vq

vy
z

qði; jþ 1Þ � qði; j� 1Þ
2

(19)

v2q

vx2zqðiþ 1; jÞ � 2qði; jÞ þ qði� 1; jÞ;

v2q

vy2zqði; jþ 1Þ � 2qði; jÞ þ qði; j� 1Þ (20)

2.4. Nusselt number

The Nusselt number, which is of a greater interest in engineering
applications, is computed to provide an idea on the heat transfer
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characteristics. The Nusselt number can be defined as the local
temperature gradient as follows:The local Nusselt number (Nu)
based on obstacle height is evaluated as:

Nu ¼ �vq

vY
(21)

The thermal heat transferred from the hot wall to the flow is
characterized by the space-averaged Nusselt number evaluated as
follows:

Nu ¼
Z1

0

�vq

vY
dX (22)

The space- and time-averaged Nusselt number is given by:
Fig. 7. Streamlines: (a) Re¼ 10, (b) Re¼ 20
hNui ¼ 1
s2 � s1

Zs2

s1

Nuds (23)

where the time interval (s2� s1) is the period of oscillation of the
space-averaged Nusselt number Nu.
3. Results and discussion

Numerical simulations are performed to examine the influence
of the inclined square obstacle upon the flow and temperature field
inside the channel. In particular, the effects of the Reynolds number
on Strouhal number, time-averaged drag coefficient, local Nusselt
number and space- and time-averaged Nusselt number are
, (c) Re¼ 40, (d) Re¼ 60, (e) Re¼ 80.
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investigated. It should be noted that for the periodic flow, all
solutions are dependent on time, then, in the following study
curves and streamline fields are given at an arbitrary instant.
3.1. Code validation

The code based on the (MRT-LBE / FDM) was extensively exer-
cised on benchmark problems to check its validity (see Mezrhab
et al. [12,21]; Jami et al. [32]). In this paper, we have chosen to
present the code validation for two studies. Firstly, computations
were performed for the configuration studied by Breuer et al. [16]
who have modeled a confined flow around a cylinder with square
cross-section mounted inside a plane channel with a blockage ratio
of 1/8. We present in Fig. 5(a) and (b), the time-averaged drag
coefficient and the Strouhal number for different values of the
Reynolds number Re ranged between 10 and 250. It should be noted
that the present results are compared with the ones reported by
Breuer obtained from the Finite Volume Method (FVM) using
560� 340 non uniform grids and the Lattice Boltzmann Automata
(LBA) using 2000� 320 uniform grids. As can be seen, our results
compare favourably graphically with those reported by Breuer et al.
[16]. Secondly, our results were validated with those obtained by
Turki et al. [6]. An unsteady flow field and heat transfer charac-
teristics in horizontal channel with a built-in heated square
cylinder with blockage ratio equal 1/4 is considered. The variations
of the time-averaged Nusselt number versus Reynolds number on
each side of the square cylinder are compared in Fig. 6 with those
obtained by Turki et al. [6] for different Reynolds numbers. Also
here, an excellent agreement is noted between our results and
those obtained by Turki et al. [6].

A preliminary study was carried out to determine the optimum
grid. To check the grid independence, different computations were
performed for Re¼ 200 and for different uniform grids (Nx�Ny).
To do this, we have considered four progressively meshes, namely
953�123, 1261�163, 1567� 203 and 1875� 243 where the
number of grid nodes distributed over a diagonal of the cylinder is
31, 41, 51 and 61, respectively. From Table 1, one can deduce that the
maximum difference between the values of Cd, St and CNuD obtained
for the 1567�203 grid and the finest 1875� 243 grid was less than
1.17%, 0.14% and 0.11%, respectively. Therefore, for a better
Fig. 8. Streamlines: (a) Re¼ 100
compromise between the accuracy of results and the calculation
time, the grid of 1567� 203 points was chosen for all simulations
reported in this paper.

In the following, numerical results obtained with air as
a working fluid (Pr¼ 0.71) are presented and discussed.
3.2. Streamlines and isotherms

Fig. 7 shows the structure of the wake downstream of the
obstacle for different Reynolds numbers ranging from 10 to 80. The
effect of Reynolds number on the flow pattern and the structure of
the steady recirculation eddies is clearly observed. For very low
Reynolds number characterized by the combined effects of low
velocity and high viscosity, the creeping steady flow past the
inclined square cylinder persists without separation. As Re increases,
the magnitude of viscous forces decreases until a certain value, at
which separation of the laminar boundary layers occurs. As conse-
quence, the wake comprises a steady recirculation region of two
symmetrically placed vortices on each side of the wake that rotate in
opposite directions, as shown in Fig. 7(c–e). The length of these
vortices grows as Re increases. The streamline profiles are plotted at
different axial locations in the channel, and still symmetric with
respect the oncoming flow. For Re¼ 80 (see Fig. 7(e)), the symmet-
rical behaviours observed behind the obstacle begins to be
destroyed, but the recirculation region is still observed. For Re> 80
and for a critical Reynolds number, the fluid flow changes its
behaviour and the wake loses its original symmetry. An unsteady
flow takes place and a repeating pattern of swirling vortices caused
by the unsteady separation flow over the obstacle is now observed.
This periodic state of the flow pattern is characterized by the alter-
nate shedding vortices from the rear face of the inclined square
cylinder into the stream. This phenomenon, well known as the von
Karman vortex streets, is visualized by a representative instanta-
neous streamline contours in Fig. 8(a–c).

In the periodic state, Re� Rec, and as the Reynolds number
increases, the oscillations in the wake grow in magnitude, and this
state begins to shed vortices into the stream. The unsteadiness in
the flow increases with Reynolds number. Just behind the rear half
of the obstacle, the separation occurs while producing two small
vortices. These vortices grow slowly with the increase of Re. For this
, (b) Re¼ 200, (c) Re¼ 300.
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study the critical Reynolds number is found to be Rec z 82. As
mentioned by Sohankar et al. [5], it may be conjectured that the
critical Reynolds number characterizing the onset of vortex shed-
ding increases with increasing blockage.

Patterns of isotherms for various Reynolds numbers are shown in
Fig. 9(a–f). From these figures, one can conclude that the increase of
Re has a beneficial effect on the heat transfer from the hot wall to the
flow. For Re� 80, (Fig. 9(a–c)), the thickness of the thermal layer
adjacent to the hot bottom wall decreases as Re increases. For these
values of Re, the flow is symmetrical and characterized by a vertical
gradient of temperature across the channel. The presence of the
inclined square cylinder has only a local effect and does not grossly
distort the isotherms and streamlines.

When the flow becomes asymmetric (Fig. 9(d–f)), the heat
transfer from the hot wall to the flow is more influenced by the
presence of the inclined square cylinder. In fact, the thermal
boundary layer is greatly disturbed by the periodic flow caused
by the obstacle, and isotherms are removed far away and tend to
Fig. 9. Isotherms: (a) Re¼ 10, (b) Re¼ 40, (c) Re¼
be convected toward the top plate proving hence that the
medium flow is more heated in asymmetric flow than in
symmetric flow.

3.2.1. Drag coefficient and Strouhal number
One of the most important parameters for flow around an

obstacle is the drag coefficient Cd. Fig. 10 depicts the time-averaged
drag coefficient Cd against Reynolds number Re. In the region of
small Re numbers the drag coefficient varies strongly with Re. In
fact, in the steady state (0� Re� 80), due to diminishing effect of
viscous force, the drag coefficient decreases with increase of Re
until a local minimum Cdmin¼ 1.783 where Re reaches its critical
value. In the unsteady 2D flow regime (82� Re� 300), the near-
wake becomes instable and a sinusoidal oscillation starts. The
averaged Cd increases slightly with the increasing of Re. This can be
attributed to the streamlined shape of the inclined square cylinder
which facilitates formation of a thin boundary layer on the surfaces
facing the incoming flow.
80, (d) Re¼ 100, (e) Re¼ 200, (f) Re¼ 300.



Fig. 10. Time-averaged drag coefficient versus Re.
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Another important quantity in unsteady periodic flow is the
vortex shedding frequency, which is determined by the Strouhal
number defined by fd/umax, f being the frequency of vortex shed-
ding. The Strouhal Number represents a measure of the ratio of
inertial forces due to the unsteadiness of the flow or local acceler-
ation to the inertial forces due to changes in velocity from one point
to another in the flow field. St has been determined from the time
evolution plot of the lift coefficient distribution by calculating the
time period for one cycle of vortex shedding. Once the time period
is known, the corresponding frequency and then the Strouhal
number can be evaluated. Note that the characteristic frequency f
can be also determined by a spectral analysis (fast Fourier trans-
formation FFT) of time series of the lift coefficient. Fig. 11 summa-
rizes the variation of the computed Strouhal number against
Reynolds number. Note that the Strouhal number was calculated
from the time history of the lift coefficient. The frequency of vortex
Fig. 11. Strouhal number versus Re.
shedding increases almost linearly with Re which is prolonged to
Re/Rec z 2. This behaviour was observed by Kahawita and Wang
[33] in their computations for trapezoidal bluff bodies, and the
same observation was found by De et al. [34] for a triangular
cylinder. Further increase in Re causes the curve to increase at
a slower rate until it reaches a flat maximum around Re¼ 200. After
that, the frequency of shedding falls down. This interesting
behaviour was also observed in the experiments of Okajima [35].

3.2.2. Skin friction
It is well known that the enhancement in heat transfer is

associated with penalty in terms of increased skin friction coeffi-
cient leading to higher pressure drop. The local skin friction coef-
ficient for the two channel walls in the presence of the inclined
square cylinder is presented in Fig. 12 for two different Reynolds
numbers (Re¼ 50, 150).

At Re¼ 50 (symmetric flow), the coefficient C for the two walls is
symmetric about the value C¼ 0. This result is expected because
the symmetrical flow behaves by the same manner near the two
plates. The presence of the inclined square obstacle involves
increased value of surface friction on the channel walls (in absolute
value) to a peak located at Xinþ d/2, due to the acceleration of the
flow. Thereafter, it decreases due to deceleration and tends toward
its asymptotic value in fully developed flow. At Re¼ 150 (periodic
flow), a complete change of the behavior of C is observed. The
curves become instantaneously waved along the two walls behind
the obstacle with decrease amplitude when we move away from
the obstacle. These regions of high skin friction are created by the
sweep motion due to streamwise vortices.

3.2.3. Local Nusselt number
Local bottom wall Nusselt number in the presence and in the

absence of the inclined square cylinder for Re¼ 50 and Re¼ 150 is
shown in Fig. 13. In the inlet region, a thermally developing flow
exists, and all curves show nearly identical behavior. In the absence
of the obstacle, the Nusselt number is very higher near y¼ 0 and
decreases monotonically until reaching the channel exit. At Re¼ 50,
when the flow is steady, Nu increases immediately after the
Fig. 12. Variation of skin friction on the channel walls: dashed line: Re¼ 50; Solid line:
Re¼ 150.



Fig. 13. Local Nusselt number distribution along the lower wall. Dashed line: without
obstacle; solid line: with obstacle.
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location of the inclined square obstacle, as one moves from the
cylinder and after attaining a maximum value, it decreases in the
far wake. This maximal value of Nu corresponds approximately to
the reattachment point at the back of the obstacle. Thus, the
presence of the obstacle has just a little local effect by increasing
slowly the local Nusselt number and only one peak appears. In
contrast, at Re¼ 150, the effect of the presence of the inclined
square prism is more important. The Nu curve is well disturbed, but
appears floating above the dashed line because the vortex shedding
after the inclined square cylinder is unsteady. Secondary peaks and
crest further downstream occur. At the exit region and for Re¼ 150,
the asymptotic Nu value is found to be higher when the obstacle is
present. An immediate conclusion can be made: the periodic flow
promotes the heat transfer from the hot plate to the near flow, and
Fig. 14. Variation of the space- and time-averaged Nusselt number with the Reynolds
number.
this heat is immediately advected and diffused by the Von Karmen
street vortex to the medium flow.

3.2.4. Average Nusselt number
The variation of the space- and time-averaged Nusselt numbers

as function of the Reynolds number with and without the inclined
square obstacle is plotted in Fig. 14. First, we can see that for every
case, CNuD goes up largely when the Reynolds number increases.
Two zones are distinguished: at relatively low Reynolds numbers
corresponding to the symmetric flow (Re� 80), the presence of the
obstacle has no significant effect in the space- and time-averaged
Nusselt number. When the Reynolds number exceeds 80, the
curves differ significantly. In other words, the presence of the
inclined square cylinder leads to marked enhancement on
the space- and time-averaged Nusselt number compared with that
obtained without cylinder. At Re¼ 300 this augmentation is about
58%.
4. Conclusions

In this paper, the laminar flow of air and the heat transfer in
a channel differentially heated and obstructed by an inclined
square cylinder have been investigated by a 2-D hybrid scheme
with lattice Boltzmann for fluid velocity fields and finite difference
for temperature. The obtained results lead to the following
conclusions:

� Even using a coarse mesh, the MRT-LBE captures the important
physical phenomenon.
� The critical value of Reynolds number relative to transition

from steady to periodic flow, for an inclined square prism
inserted is about 82.
� For the symmetric flow (Re< 82), the presence of the inclined

square prism has only local effects on the heat transfer and on
the flow pattern, while for the periodic flow (Re� 82), the heat
transfer is seen to increase strongly with Re in presence of the
inclined square inner body.
� The drag coefficient shows a local minimum at Re¼ 82, also,

the numerical method provides a local maximum of Strouhal
number at Re¼ 200.
� The local Nusselt number changes only in the rear end of the

inclined square prism due to the vortex shedding created by
the presence of the obstacle.
� The averaged Nusselt number is an increasing function of the

Reynolds number. The influence of the Re is more significant in
the presence of the inclined square cylinder.
� The maximum enhancement of heat transfer is about 58% for

Re¼ 300 in the presence of the inclined square cylinder. The
increase in the apparent friction factor is also important.
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